Hierarchically-partitioned Gaussian Process Approximation

نویسندگان

  • Byung-Jun Lee
  • Jongmin Lee
  • Kee-Eung Kim
چکیده

The Gaussian process (GP) is a simple yet powerful probabilistic framework for various machine learning tasks. However, exact algorithms for learning and prediction are prohibitive to be applied to large datasets due to inherent computational complexity. To overcome this main limitation, various techniques have been proposed, and in particular, local GP algorithms that scales ”truly linearly” with respect to the dataset size. In this paper, we introduce a hierarchical model based on local GP for large-scale datasets, which stacks inducing points over inducing points in layers. By using different kernels in each layer, the overall model becomes multi-scale and is able to capture both longand short-range dependencies. We demonstrate the effectiveness of our model by speedaccuracy performance on challenging realworld datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Mixture-of-Experts Model for Large-Scale Gaussian Process Regression

We propose a practical and scalable Gaussian process model for large-scale nonlinear probabilistic regression. Our mixture-of-experts model is conceptually simple and hierarchically recombines computations for an overall approximation of a full Gaussian process. Closed-form and distributed computations allow for efficient and massive parallelisation while keeping the memory consumption small. G...

متن کامل

Asymptotic Behaviors of the Lorenz Curve for Left Truncated and Dependent Data

The purpose of this paper is to provide some asymptotic results for nonparametric estimator of the Lorenz curve and Lorenz process for the case in which data are assumed to be strong mixing subject to random left truncation. First, we show that nonparametric estimator of the Lorenz curve is uniformly strongly consistent for the associated Lorenz curve. Also, a strong Gaussian approximation for ...

متن کامل

A tree-based kernel selection approach to efficient Gaussian mixture model-universal background model based speaker identification

We propose a tree-based kernel selection (TBKS) algorithm as a computationally efficient approach to the Gaussian mixture model–universal background model (GMM–UBM) based speaker identification. All Gaussian components in the universal background model are first clustered hierarchically into a tree and the corresponding acoustic space is mapped into structurally partitioned regions. When identi...

متن کامل

Distributed Gaussian Process Regression Under Localization Uncertainty

In this paper, we propose distributed Gaussian process regression for resource-constrained distributed sensor networks under localization uncertainty. The proposed distributed algorithm, which combines Jacobi over-relaxation and discrete-time average consensus, can effectively handle localization uncertainty as well as limited communication and computation capabilities of distributed sensor net...

متن کامل

Bit Error Performance for Asynchronous Ds Cdma Systems Over Multipath Rayleigh Fading Channels (RESEARCH NOTE)

In recent years, there has been considerable interest in the use of CDMA in mobile communications. Bit error rate is one of the most important parameters in the evaluation of CDMA systems. In this paper, we develop a technique to find an accurate approximation to the probability of bit error for asynchronous direct–sequence code division multiple–access (DS/CDMA) systems by modeling the multipl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017